Search results for "silicate gla"

showing 10 items of 16 documents

New low-temperature phosphate glasses as a host for Europium Ions

2021

Abstract Artificial lightining, especially that of light emitting diodes, and telecommunications are penetrating every part of human lives daily. Different compositions phosphate glasses were suggested as a suitable host material for Eu3+ ions. Here rare earth metal ions act as luminescent centers also perturbing the bond order of phosphate glass network comprised of (PO4)3−, [−(O)PO3]2−, [−(O)2PO2]−, [−(O)3PO] structural units, which is indicated by Raman spectroscopy, confirming successful integration of aforementioned ions into the glass material. Glasses doped with Eu3+ ions show their typical photoluminescence spectra in low symmetry environment, consisting of the highest intensity 5D0…

010302 applied physicsMaterials scienceBorosilicate glassMetal ions in aqueous solutionInorganic chemistryDopingchemistry.chemical_elementGermanium02 engineering and technology021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesElectronic Optical and Magnetic MaterialsPhosphate glasssymbols.namesakechemistry0103 physical sciencesMaterials ChemistryCeramics and Compositessymbols0210 nano-technologyEuropiumLuminescenceRaman spectroscopyJournal of Non-Crystalline Solids
researchProduct

OH-related Infrared Absorption Bands in Oxide Glasses

2005

We report the infrared activity, in the spectral region of the OH stretching modes, of different composite silicate glasses whose chemical composition is established by X-ray fluorescence measurements. The analysis of the absorption line profiles is made in terms of different spectral contributions, Gaussian in shape. The comparison with analogous spectra obtained in vitreous silica samples with impurity concentrations < 100 part per million moles is evidence of the effects of the different oxides on the vibrational properties of the OH groups. In particular, for oxide glasses a red shift of the composite band at about 3670 cm(-1), assigned to the OH stretching modes of free Si-OH groups an…

Absorption spectroscopyInfraredFTIR AbsorptionOxide glasseOxideAnalytical chemistryX-ray fluorescenceInfrared spectroscopyCondensed Matter PhysicsCondensed Matter::Disordered Systems and Neural NetworksSylanol groupsSilicateSpectral lineSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)Settore FIS/03 - Fisica Della MateriaElectronic Optical and Magnetic Materialschemistry.chemical_compoundchemistryImpurityHydroxyl groupFTIR spectroscopy.Materials ChemistryCeramics and Compositessilicate glasse
researchProduct

MZ-35, a new layered pentasil borosilicate synthesized in the presence of large alkali cations

2013

Abstract A new layered borosilicate has been synthesized in the presence of cesium and sodium cations and its structure has been solved by a combination of automated diffraction tomography (ADT) and X-ray powder diffraction (XRPD). MZ-35 has a composition NaCs 2 [BSi 7 O 16 (OH) 2 ](OH) 2 ·4H 2 O and features space group P-4m2. The unusually small unit cell ( a 7.3081 A, c 10.7520 A) is shared by two random-stacked configurations of the structure: a network of connected pentasil units related to the layer of RUB-18 and a bidimensional checkerboard of intersecting ladders of 4-membered rings. The two configurations are related by the simple face-sharing inversion of a hydroxyl-bearing tetrah…

Automated electron diffraction tomography; Rietveld structure refinement; Layered borosilicate; 4-MR ladders; Face-sharing terahedraMaterials science4-MR laddersSodiumchemistry.chemical_element02 engineering and technology010402 general chemistry01 natural sciencesDiffraction tomographyFace-sharing terahedraGroup (periodic table)General Materials ScienceRietveld structure refinementLayered borosilicateBorosilicate glassAutomated electron diffraction tomographyGeneral Chemistry4-MR ladders; Automated electron diffraction tomography; Face-sharing terahedra; Layered borosilicate; Rietveld structure refinement[CHIM.MATE]Chemical Sciences/Material chemistry021001 nanoscience & nanotechnologyCondensed Matter PhysicsAlkali metal4-MR ladders; Automated electron diffraction tomography; Face-sharing terahedra; Layered borosilicate; Rietveld structure refinement;0104 chemical sciencesCrystallographychemistryMechanics of MaterialsCaesiumTetrahedron0210 nano-technologyPowder diffraction
researchProduct

Luminescence of phosphorus containing oxide materials: Crystalline SiO2‐P and 3P2O5⋅7SiO2; CaO⋅P2O5; SrO⋅P2O5 glasses

2014

Luminescence of phosphate glasses such as CaO⋅P2O5 and SrO⋅P2O5 is compared with that of phosphorus doped crystalline α-quartz and phosphosilicate glass with content 3P2O5⋅7SiO2. Water & OH groups are found by IR spectra in these materials. The spectrum of luminescence contains many bands in the range 1.5 - 5.5 eV. The luminescence bands in UV range at 4.5-5 eV are similar in those materials. Decay duration in exponential approximation manifests a time constant about 37 ns. Also a component in μs range was detected. PL band of μs component is shifted to low energy with respect to that of ∼37 ns component. This shift is about 0.6 eV. It is explained as singlet-triplet splitting of excited st…

CrystalPhotoluminescenceMaterials scienceExcited stateAnalytical chemistryMineralogyInfrared spectroscopyLuminescenceThermoluminescencePhosphosilicate glassPhosphate glassAIP Conference Proceedings
researchProduct

High spatial resolution analysis of the iron oxidation state in silicate glasses using the electron probe

2018

The iron oxidation state in silicate melts is important for understanding their physical properties, although it is most often used to estimate the oxygen fugacity of magmatic systems. Often high spatial resolution analyses are required, yet the available techniques, such as μrXANES and μMössbauer, require synchrotron access. The flank method is an electron probe technique with the potential to measure Fe oxidation state at high spatial resolution but requires careful method development to reduce errors related to sample damage, especially for hydrous glasses. The intensity ratios derived from measurements on the flanks of FeLα and FeLβ X-rays (FeLβf/FeLαf) over a time interval (time-depend…

Dewey Decimal Classification::500 | Naturwissenschaften::540 | ChemieMaterials science010504 meteorology & atmospheric sciencesoxidationAnalytical chemistryreductionElectron010502 geochemistry & geophysics01 natural sciencesflank methodReduction (complexity)symbols.namesakeelectron beam damageGeochemistry and PetrologyOxidation stateElectron probe microanalysis (EPMA)High spatial resolutioniron (Fe) oxidation statesilicate glassSilicate glass0105 earth and related environmental sciencesGeophysicsddc:540Raman spectroscopysymbolsRaman spectroscopy
researchProduct

Effect of pressure and temperature on viscosity of a borosilicate glass

2018

International audience; During industrial glass production processes, the actual distribution of stress components in the glass during scribing remains, to date, poorly quantified, and thus continues to be challenging to model numerically. In this work, we experimentally quantified the effect of pressure and temperature on the viscosity of SCHOTT N-BK7 glass, by performing in situ deformation experiments at temperatures between 550 and 595 °C and confining pressures between 100 MPa and 300 MPa. Experiments were performed at constant displacement rates to produce almost constant strain rates between 9.70 × 10 −6 s-1 and 4.98 × 10-5 s-1. The resulting net axial stresses range from 81 MPa to 8…

Glass productionWork (thermodynamics)Materials science010504 meteorology & atmospheric sciencesStrain (chemistry)Borosilicate glassbusiness.industry02 engineering and technology021001 nanoscience & nanotechnology01 natural sciences[SPI.MAT]Engineering Sciences [physics]/MaterialsStress (mechanics)ViscosityMaterials ChemistryCeramics and CompositesComposite materialDeformation (engineering)0210 nano-technologybusinessDisplacement (fluid)0105 earth and related environmental sciencesJournal of the American Ceramic Society
researchProduct

A Raman calibration for the quantification of SO42-groups dissolved in silicate glasses: Application to natural melt inclusions

2017

Sulfur is an important volatile element involved in magmatic systems. Its quantification in silicate glasses relies on state-of-the-art techniques such as electronprobe microanalyses (EPMA) or X-ray absorption spectroscopy but is often complicated by the fact that S dissolved in silicate glasses can adopt several oxidation states (S6+for sulfates or S2-for sulfides). In the present work, we use micro-Raman spectroscopy on a series of silicate glasses to quantify the S content. The database is constituted by 47 silicate glasses of various compositions (natural and synthetic) with S content ranging from 1179 to 13 180 ppm. Most of the investigated glasses have been synthesized at high pressur…

Materials science010504 meteorology & atmospheric sciencesAbsorption spectroscopyS contentAnalytical chemistrychemistry.chemical_elementredox conditionsElectron microprobe010502 geochemistry & geophysicsmelt inclusions01 natural scienceschemistry.chemical_compoundsymbols.namesakeS speciationGeochemistry and PetrologyOxidizing agentSulfatesilicate glassSpectroscopyGeophysic0105 earth and related environmental sciencesMelt inclusionsmelt inclusionMicro-Raman spectroscopyredox conditionSulfurGeophysicschemistry13. Climate action[SDU]Sciences of the Universe [physics]symbolssilicate glaRaman spectroscopy
researchProduct

Atomic layer deposition and characterization of biocompatible hydroxyapatite thin films

2009

Abstract Atomic layer deposition (ALD) was used to produce hydroxyapatite from Ca(thd) 2 (thd = 2,2,6,6-tetramethyl-3,5-heptanedionato) and (CH 3 O) 3 PO onto Si(100) and Corning (0211). Film crystallinity, stoichiometry, possible impurities and surface morphology were determined. The as-deposited films contained significant amounts of carbonate impurities however, annealing at moist N 2 flow reduced the carbonate content even at 400 °C. The as-deposited Ca–P–O films were amorphous but rapid thermal annealing promoted the formation of the hydroxyapatite phase. Mouse MC 3T3-E1 cells were used for the cell culture experiments. According to the bioactivity studies cell proliferation was enhanc…

Materials scienceAnnealing (metallurgy)Borosilicate glassMetals and AlloysMineralogySurfaces and InterfacesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsAmorphous solidchemistry.chemical_compoundAtomic layer depositionCrystallinitychemistryChemical engineeringImpurityMaterials ChemistryPolystyreneThin film
researchProduct

Electron microprobe technique for the determination of iron oxidation state in silicate glasses

2018

We present a new calibration for the determination of the iron oxidation state in silicate glasses by electron probe microanalysis (EPMA) with the "flank method." This method is based on the changes in both intensity and wavelength of the FeLα and FeLβ X-ray emission lines with iron oxidation state. The flank method utilizes the maximum difference for the FeLα and FeLβ spectra observed at the peak flanks between different standard materials, which quantitatively correlates with the Fe2+ content. Provided that this correlation is calibrated on reference materials, the Fe2+/ΣFe ratio can be determined for samples with known total Fe content. Two synthetic Fe-rich ferric and ferrous garnet end…

MicroprobeMaterials science010504 meteorology & atmospheric sciencesInorganic chemistryElectron microprobe010502 geochemistry & geophysics01 natural sciencesRedoxflank methodferric-ferrous ratioGeophysicsGeochemistry and PetrologyOxidation stateredox statepillow glassesSilicate glassMicroprobesilicate glasses0105 earth and related environmental sciences
researchProduct

Ion-sputtering deposition of Ca–P–O films for microscopic imaging of osteoblast cells

2007

Abstract An ion-beam sputtering technique was used to produce Ca–P–O films on borosilicate glass at room temperature from hydroxyapatite targets using nitrogen, argon and krypton beams at different acceleration voltages. The sputtering target was pressed from high purity hydroxyapatite powder or mixture of high purity hydroxyapatite powder and red phosphorus in order to optimise the film composition. The film composition, determined using time-of-flight elastic recoil detection analysis (TOF–ERDA), was found to be strongly dependent on the ion energy used for deposition. By extra doping of the target with P the correct Ca/P atomic ratio in the deposited films was reached. The films deposite…

Nuclear and High Energy PhysicsIon beam analysisArgonMaterials scienceAnnealing (metallurgy)Borosilicate glassAnalytical chemistrychemistry.chemical_elementAmorphous solidElastic recoil detectionchemistrySputteringAtomic ratioInstrumentationNuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
researchProduct